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Dynamics of excitations in molecular condensates under
the influence of an ultrashort pulse
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121 16 Prague 2, Czech Republic
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Abstract. A new method for the description of simultaneous creation, annihilation, propagation
and relaxation of excitations in exciton (electron) systems interacting with a phonon bath and an
ultrashort quantum optical pulse is developed on the basis of generalized master equations derived
by using a time-dependent projector. It is shown, that standard theories starting from an already
created excitation at a given place, without any off-diagonal elements of the exciton density
matrix, have a very limited area of application because off-diagonal elements are generally
nonzero once the excited pulse switches off. Derived equations also describe the influence of
quantum statistics of the pulse.

1. Introduction

Investigation of the interaction of electromagnetic fields with quantum systems gets more
important all the time due to the rapid development of experimental techniques. In particular,
ultrafast optical spectroscopy, which takes advantages of optical pulses of several tens of
femtosecond duration, is developing fast [1]. New experiments make it necessary to develop
theories which are more powerful in the description of the interaction of electromagnetic
fields with matter than the classical optical Bloch equations.

Optical Bloch equations describe the interaction of a two-level atom with a
monochromatic classical wave and the interaction of the two-level atom with a bath is
described phenomenologically using the longitudinal and transversal relaxation times [2].
The inclusion of the interaction with a bath on a microscopic level leads to the generalized
optical Bloch equations [3]. They contain in general three relaxation times, which are
field dependent. Their use is inevitable in the case of strong fields. They reduce to the
classical Bloch equations in the limit of weak fields. The Bloch equations can also be
generalized for atoms which have more than two levels and for fields composed of two or
more monochromatic components [2].

Great attention has been devoted to the description of the interaction of ultrashort
classical pulses with excitations in semiconductors during last years [4]. The spacial
periodicity of studied materials enables us to apply conveniently the description based on
Green function techniques. The method of equations of motion for reduced density matrices
has been developed and successfully applied [5, 6] when studying Coulomb, exchange and
electron (exciton)–phonon interactions in semiconductors. The other method used in this

† Present address: Joint Laboratory of Optics of Palacký University and Czech Academy of Sciences, 17 listopadu
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field is the method of nonequilibrium Green functions. It can also be successfully applied
when static disorder of material is present [7].

In the case of excitations in various molecular condensates interacting with a phonon
bath the above mentioned approaches are not suitable. The reason is a combination of the
strength of the static disorder as compared with the band width and the strength of the
on-site coupling to phonons. Description based on (generalized) master equations (see e.g.
[8–10]) is standardly used in this field. However, an initially created excitation is always
supposed in standard theories, and master equations then describe only the dynamics of an
excitation interacting with a phonon bath. On the other hand, with respect to the progress
of experimental techniques, it is important to understand also the initial period of the time
development of excitation, i.e. the period in which the excitation is being created but in
which it is already influenced by propagation and relaxation.

We develop a new method which allows us to treat simultaneous creation, relaxation and
propagation of an excitation in molecular condensates interacting with ultrashort pulses [11].
The method is based on the use of the projection superoperator technique based on a time-
dependent projector and it provides a generalized master equation for the reduced density
matrix of the exciton subsystem. It represents a generalization of standard approaches based
on time-convolutionless master equations [12–14]. Similar to the standard approaches, the
perturbation approximation in both the exciton–photon and the exciton–phonon coupling
constants is invoked in a rather sophisticated manner.

After the pulse is gone, the method provides the same equations for the excitation
dynamics as were derived by the standard approaches which include off-diagonal matrix
elements of the exciton-reduced density matrix. However, the method shows that after the
pulse switches off, off-diagonal matrix elements are in general nonzero. This means that the
standard approaches have a very limited area of application because they suppose an initially
created excitation at a given place and they assume zero initial off-diagonal elements of the
exciton reduced density matrix.

The method also substantially differs from all the above-mentioned theories in the
following. It is capable to describe effects connected with statistical properties of optical
fields including nonclassical, i.e. purely quantum, properties like squeezing of vacuum
fluctuations. This makes the method promising for applications in this direction, because
all the above-mentioned methods describe only the interaction of matter with classical
deterministic fields.

The paper is divided as follows. Section 2 describes a model of the system under
investigation composed of exciton, phonon and photon subsystems in the mutual interaction.
Section 3 is devoted to generalized master equations for coupled systems. Section 4 contains
a derivation of equations for the exciton-reduced density matrix. Comparison of equations
derived in section 4 with those from standard theories is given in section 5. Section 6
summarizes the obtained results and gives conclusions.

2. Description of a model

Our system consists of exciton (or electron), photon and phonon subsystems with the
exciton–photon and exciton–phonon interactions. Hamiltonians of the free exciton (Ĥe),
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photon (Ĥf ) and phonon (̂Hph) subsystems are given as follows

Ĥe =
∑
m,n

Jmnĉ
†
mĉn

Ĥf =
∑
K

h̄ωKâ
†
KâK

Ĥph =
∑
k

h̄�kb̂
†
kb̂k

(1)

where ĉ†m (ĉm) means the creation (annihilation) operator of exciton at themth site of
the lattice (Frenkel excitons are considered),â

†
K (âK ) represents the creation (annihilation)

operator of theKth photon mode and̂b†k (b̂k) is the creation (annihilation) operator of the
kth phonon mode. The coefficientsJmn describe energies of the free exciton subsystem
for m = n and transfer in the exciton subsystem given by overlaps of wavefunctions for
m 6= n. The excitonless state|0〉 is supposed to have zero energy. The symbolωK (�k)
stands for the frequency of theKth (kth) mode of photon (phonon) field. The symbol

∑
K

(
∑

k) means summation over all photon (phonon) modes and
∑

m denotes summation over
all exciton states; ¯h is the reduced Planck constant.

The exciton operatorŝc†m and ĉm obey the Pauli commutation relations, whereas the
photon and phonon operatorsâ†K , âK , b̂†k and b̂k obey the boson commutation relations.
With respect to the restriction of the following calculations to the excitonless state and to
states with only one exciton, we can also use the obtained results without any change for an
electron subsystem instead of the exciton one, regardless of the fact that electron operators
are of the fermion type.

The exciton–photon interaction Hamiltonian̂He−f in the rotating wave approximation
reads [15]

Ĥe−f =
∑
m,K

h̄ωK0F
m
K (âK ĉ

†
m + â†−Kĉm) (2)

whereωK0 is a typical photon frequency. The coupling constantsFmK must fulfil the relations
FmK = Fm∗−K (∗ denotes complex conjugation) in order to ensure hermiticity ofĤe−f . The
exciton–photon coupling constantsFmK are given in the dipole approximation by

FmK = −
1

h̄ωK0

√
h̄

2ε0VωK

e

me
εK · 〈m|p̂|0〉 exp(iK · rm). (3)

Here e (e < 0) is the charge of electron,me the mass of electron,̂p the momentum
operator of the electron,rm the mean position of themth atom in a lattice,|0〉 describes the
excitonless state,|m〉 the state with one exciton localized at themth site of the lattice and the
dot means the scalar product;εK is the polarization vector of theKth mode of the photon
field, ε0 permittivity of a vacuum andV the quantization volume of the electromagnetic
field. We supposed thatεK = ε∗−K and the coefficients〈m|p̂|0〉 to be real in expression (2)

for Ĥe−f .
The exciton–phonon interaction is described by the interaction HamiltonianĤe−ph in

the form [15, 10]

Ĥe−ph = 1√
N

∑
m,k

h̄�kG
m
k ĉ
†
mĉm(b̂k + b̂†−k) (4)

with only the site-diagonal exciton–phonon coupling included. Hermiticity ofĤe−ph leads
to the restrictionGm

k = Gm∗
−k for the exciton–phonon coupling constants. The dependence
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of the exciton–phonon coupling constantsGm
k on the site indexm and the mode indexk is

determined according to the type of phonons (optical or acoustic) and according to the model
of the exciton–phonon interaction.N means the number of phonon modes. Hamiltonian
(4) describes deformation of the lattice around a given sitem after it was occupied by an
exciton (polaron effect). Terms describing the site-off-diagonal exciton–phonon coupling,
which describe the motion of excitons promoted by phonons, are missing here, because we
suppose that they are negligible (for a detailed discussion see [10]).

Finally we introduce the Liouville superoperators

Lα = 1

h̄
[Ĥα, ] (5)

for all Hamiltonians Ĥα defined above, i.e. forα = e, f, ph, e–f, e–ph. We also
introduce the Liouville superoperators for the exciton subsystemLS (LS = Le), compound
photon and phonon subsystemLR (LR = Lf + Lph), whole system without interactionL0

(L0 = Le+Lf+Lph), for the interaction part of the whole systemLint (Lint = Le−f+Le−ph)
and for the whole systemL (L = Le+ Lf + Lph+ Le−f + Le−ph).

3. Projection superoperator formalism

A projection superoperator formalism forms the basis for the method. We have a system
which consists of three subsystems, but we orientate our attention mainly to the exciton
one. So our aim is to eliminate the photon and phonon subsystems and to obtain equations
which govern the dynamics of the exciton subsystem only. Such a task can be solved by the
use of projection superoperator techniques applied to the Liouville equation for the density
matrix of the composite system [16, 17]. The projection superoperator techniques based on
time-independent projectors [18–21] are used by standard methods for the description of
exciton interaction with an inertial phonon reservoir [12–14]. However, the situation is more
complex in our case, because the photon subsystem with a density matrix which is strongly
time-dependent (it describes an ultrashort optical pulse) should also be projected off. A
strong time dependence of the photon density matrix does not exclude, in principle, the
application of time-independent projectors, but their use is not convenient. The application
of a time-dependent projector in such cases is natural and convenient.

It was revealed when studying exciton–phonon systems, that the time-convolutionless
generalized master equations are much more suitable for dealing with such systems, because
they are able to describe correctly the relaxation of excitons to the equilibrium state for long
times in the finite (second) order of the perturbation theory in the exciton–phonon coupling
constants. The time-convolution generalized master equations do not have this property
unless other (Markovian) approximations are involved [22].

For the above reason, we use the so-called time-convolutionless formalism. This name
comes from the fact that it yields time-convolutionless (i.e. time-local) equations upon
application of the time-independent projectors. In our case, owing to the time-dependent
form of the projector [23], the equations are also time-nonlocal. Anyway, technical
advantages remain. Our approach is based on the master equations for coupled systems
derived in [24] (for an application see [25]) for a system (described by the density matrix
ρ̂(t)) composed of a small system described byρ̂S(t) (ρ̂S(t) = TrR{ρ̂(t)} TrR is the trace
over reservoir) and reservoir described byρ̂R(t) (ρ̂R(t) = TrS{ρ̂(t)} TrS represents the trace
over the small system). The derivation of the master equations is based on the application
of the time-dependent projectorP(t) of the form

P(t)X̂ = ρ̂S(t)TrS{X̂} + ρ̂R(t)TrR{X̂} − ρ̂S(t)ρ̂R(t)Tr{X̂} (6)
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where Tr= TrS TrR denotes the trace over the whole system andX̂ stands for an arbitrary
operator.

The standard procedure for the derivation of the time-convolutionless generalized master
equations leads to the following master equation

d

dt
P(t)ρ̂(t) = −iP(t)LP(t)ρ̂(t)− iP(t)Lint[θ(t)− 1]P(t)ρ̂(t)

−iP(t)Lintθ(t)G(t, t0)D(t0)ρ̂(t0) (7)

where

θ(t)− 1= ε(t)

1− ε(t) = ε(t)+ ε
2(t)+ · · · (8)

ε(t) = −i
∫ t

t0

ds G(t, s)D(s)LintP(s)G(t − s) (9)

G(t, s) = exp←

[
− i

∫ t

s

dτ D(τ )L
]

(10)

G(t − s) = exp[iL(t − s)]. (11)

In (7)–(11),D(t) = 1− P(t) is projector and the symbol exp← denotes a time-ordered
exponential with time arguments increasing to the left. The initial condition term (the
last term in (7)) is zero when the factorized initial density matrixρ̂(t0) = ρ̂S(t0)ρ̂R(t0) is
supposed (thenD(t0)ρ̂(t0) = 0). The equations for the reduced density matricesρ̂S(t) and
ρ̂R(t) are derived from (7) by the application of the operations TrR and TrS, respectively.

4. Equations for the exciton-reduced density matrix

We derive equations for matrix elements of the exciton-reduced density matrixρ̂e(t) on the
basis of the master equation (7). First we divide our three-component system into a small
system and a reservoir. The exciton subsystem constitutes the small system (ρ̂S(t) = ρ̂e(t))
and the photon and phonon subsystems form together the reservoir (ρ̂f(t) = Trph{ρ̂R(t)},
ρ̂ph(t) = Trf{ρ̂R(t)}, where Trph and Trf mean the traces over the phonon and the photon
subsystem, respectively). We suppose that the exciton and photon–phonon subsystems are
statistically independent at the beginning of interaction at timet0, so the initial density
matrix ρ̂(t0) factorizes (̂ρ(t0) = ρ̂S(t0)ρ̂R(t0)) and the initial condition term in (7) is zero.
We further restrict ourselves to the second order of the perturbation approximation in the
interaction Liouville superoperatorLint.

The master equation under these constraints reads

d

dt
P(t)ρ̂(t) = −iP(t)LP(t)ρ̂(t)− P(t)Lint

∫ t

t0

ds exp[−iL0(t − s)][1 − P(s)]LintP(s)

× exp[iL0(t − s)]P(t)ρ̂(t)+ o(L2
int). (12)

The relationP(t)L0D(t) = 0 was used when deriving equation (12). The application of TrR

and TrS to the master equation in (12) provides a coupled set of equations for the reduced
density matriceŝρS(t) and ρ̂R(t) in the form

d

dt
ρ̂S(t) = −iLSρ̂S(t)− i TrR{Lintρ̂R(t)}ρ̂S(t)− TrR

{
Lint

∫ t

t0

dτ exp[−iL0(t − τ)]

×[1− P(τ )]LintP(τ ) exp[iL0(t − τ)]ρ̂R(t)

}
ρ̂S(t)+ o(L2

int) (13)
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d

dt
ρ̂R(t) = −iLRρ̂R(t)− i TrS{Lintρ̂S(t)}ρ̂R(t)− TrS

{
Lint

∫ t

t0

dτ exp[−iL0(t − τ)]

×[1− P(τ )]LintP(τ ) exp[iL0(t − τ)]ρ̂S(t)

}
ρ̂R(t)+ o(L2

int). (14)

We suppose that the influence of the exciton subsystem on the photon–phonon subsystem
(reservoir) is negligible. This leads to a strong simplification of equation (14) forρ̂R(t) in
which only the first term on the right-hand side remains.

The photon and phonon subsystems are statistically independent at the beginning of
interaction and, neglecting the influence of exciton subsystem on the photon and phonon
ones, no coupling between the photon and phonon subsystems can develop during the
interaction. The density matrix of reservoir thus factorizes for all times,ρ̂R(t) = ρ̂f(t)ρ̂ph(t),
and the density matriceŝρf(t) and ρ̂ph(t) of the photon and the phonon subsystem,
respectively, obey the following equations,

d

dt
ρ̂f(t) = −iLf ρ̂f(t) (15)

d

dt
ρ̂ph(t) = −iLphρ̂ph(t). (16)

The phonon subsystem is supposed to be in the thermal equilibrium and it is described
by the canonical density matrix̂ρph(t),

ρ̂ph(t) = ρ̂ph(t0) = exp[−βĤph]

Trph{exp[−βĤph]} (17)

β = 1/(kBT ), kB being the Boltzmann constant andT the absolute temperature.
The photon subsystem is described in general by a density matrixρ̂f(t) obeying equation

(15) [26, 27].
After prescribing the time development ofρ̂R(t) driven by equations (15) and (16) and

inserting ρ̂R(t) into (13), equation (13) then represents a closed equation for the exciton-
reduced density matrix̂ρe(t) in the form,

d

dt
ρ̂e(t) = −iLeρ̂e(t)− i TrR{Lintρ̂R(t)}ρ̂e(t)− TrR

{
Lint

∫ t

t0

dτ exp[−iL0(t − τ)]

×[1− P(τ )]Lint exp[iL0(t − τ)]ρ̂R(t)

}
ρ̂e(t)+ o(L2

int). (18)

The resulting equation for̂ρe(t) is nonlinear and integro-differential. This is connected with
the special type of the time-dependent projector (6) which was used in its derivation.

We make a note about the origin of nonlinearity in the equation forρ̂e(t) derived above.
The application of the projector (6) without any approximation leads to the set of two
coupled nonlinear integro-differential equations for the reduced density matricesρ̂e(t) for
a small system and̂ρR(t) for a reservoir. The nonlinearity of the obtained equations is a
consequence of the fact that we remove from the description the part of the whole density
matrix (given by the expression̂ρ(t) − ρ̂e(t)ρ̂R(t)) which describes correlations between
two coupled systems originating from their mutual interaction. Thus nonlinear terms in
the equations for the reduced density matricesρ̂e(t) and ρ̂R(t) describe mutual correlations
between two mutually interacting systems. In order to get rid of nonlinear terms we must
limit the accuracy of the description of the mutual interaction of two systems in general. This
can be reached by supposing that time-dependent ‘coefficients’ in the resulting equations for
ρ̂e(t) andρ̂R(t) (containing implicitlyρ̂e(τ ) andρ̂R(τ ) in various timesτ in projectors) can
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be well approximated by their forms obtained by the restriction to several lowest orders of
their perturbation expansions. The reduced density matricesρ̂e(τ ) andρ̂R(τ ) in the projector
P(τ ) are then replaced by their forms valid to a given power of the interaction constants
and the nonlinearity is lost.

We derive equations for matrix elements of the reduced density matrixρ̂e(t) under the
restriction thatρ̂e(t) lies within the space corresponding to the Hilbert space spanned by
the excitonless state|0〉 and by states with one exciton|m〉. So it can be expressed in the
form

ρ̂e(t) =
∑
m,n

ρe
mn(t)|m〉〈n| +

∑
m

ρe
m0(t)|m〉〈0| +

∑
n

ρe
0n(t)|0〉〈n| + ρe

00(t)|0〉〈0| (19)

whereρe
mn(t) = 〈m|ρ̂e(t)|n〉 and the coefficientsρe

m0, ρe
0n and ρe

00 are defined similarly.
Doubly and other multiply excited states are disregarded here. This imposes limitations on
the strength of the applied pulse which do not, however, seem severe.

When we substitute the expression forρ̂e(t) from (19) into equation (18), we obtain
equations for the matrix elementsρe

mn(t), ρ
e
m0(t), ρ

e
0n(t) andρe

00(t). We get in general the
system of coupled nonlinear integro-differential equations forρe

mn(t), ρ
e
m0(t), ρ

e
0n(t) and

ρe
00(t). In order to simplify them, we suppose thatρ̂e(t) in the projectorP(τ ) in (18) is

approximated sufficiently by its perturbation expansion limited by several lowest orders in
the perturbation parameters in such a way that coefficients in the resulting coupled linear
differential equations for the matrix elements ofρ̂e(t) are precise to the second order in the
perturbation parameters. A detailed analysis [11] shows, that it is sufficient to restrict the
perturbation expansion for̂ρe(t) to the zeroth order of perturbation parameters. Because
our goal is to study excitation of the exciton subsystem, we suppose, that the exciton
subsystem is in the excitonless state at the beginning of interaction, i.e.ρ̂e(t0) = |0〉〈0|.
With respect to the form ofĤe in (1) (state|0〉 is an eigenstate of̂He with zero energy)
this state does not evolve in time without inclusion of the exciton-photon interaction, i.e.
ρ̂(0)e (t) = |0〉〈0| +O(coupling constants).

The method described above provides the following equations for the matrix elements
of the exciton-reduced density matrix (details of the derivation can be found in [11])

d

dt
ρe
mn(t) = −

i

h̄

∑
p

Jmpρ
e
pn(t)+

i

h̄

∑
p

Jpnρ
e
mp(t)−

∑
p

Gmn
p (t)ρe

pn(t)−
∑
p

Gnm∗
p (t)

×ρe
mp(t)−

∑
p

Īmp (t)ρ
e
pn(t)−

∑
p

Ī n∗p (t)ρ
e
mp(t)− iFm(t)ρe

0n(t)

+iFn∗(t)ρe
m0(t)+ [Imn (t)+ I n∗m (t)]ρe

00(t) (20)
d

dt
ρe

00(t) = −
∑
l

[I l∗l (t)+ I ll (t)]ρe
00(t)− i

∑
p

Fp∗(t)ρe
p0(t)+ i

∑
p

Fp(t)ρe
0p(t)

+
∑
s,p

[Ī s∗p (t)+ Ī ps (t)]ρe
sp(t) (21)

d

dt
ρe

0n(t) =
i

h̄

∑
p

Jpnρ
e
0p(t)−

∑
p

Gn∗
p (t)ρ

e
0p(t)−

∑
p

In∗p (t)ρ
e
0p(t)−

∑
l

I l∗l (t)ρ
e
0n(t)

+
∑
p

[Ĩ pn (t)+ Ĩ np (t)]ρe
p0(t)− i

∑
p

Fp∗(t)ρe
pn(t)+ iFn∗(t)ρe

00(t)

ρe
m0(t) = ρe∗0m(t). (22)

The coefficientsJmn describe the inner dynamics of the exciton subsystem, the time-
dependent coefficientsGmn

p (t) and Gm
p (t) characterize the interaction of the exciton
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subsystem with phonons and the time-dependent coefficientsFm(t), Imp (t), Ī
m
p (t) and Ĩ mp (t)

emerge from the exciton–photon interaction. The coefficients occurring in equations (20)–
(22) are correct to the second power of the exciton–photon and exciton–phonon coupling
constants, as will be seen from the ensuing expressions for the coefficients.

The time-dependent coefficientsGmn
p (t) andGm

p (t) having their origin in the exciton–
phonon interaction are given as follows

Gmn
p (t) =

∫ t−t0

0
dτ

1

N

∑
k

�2
k(G

m
k −Gn

k){[nB(h̄�k)+ 1] exp(−i�kτ)

+nB(h̄�−k) exp(i�−kτ )}
∑
s

Gs
−k〈m|s〉(τ )〈p|s〉∗(τ )

Gn
p(t) =

∫ t−t0

0
dτ

1

N

∑
k

�2
kG

n
k{[nB(h̄�k)+ 1] exp(−i�kτ)+ nB(h̄�−k) exp(i�−kτ )}

×
∑
s

Gs
−k〈n|s〉(τ )〈p|s〉∗(τ )

(23)

where

nB(h̄�k) = 1

exp(βh̄�k)− 1
(24)

denotes the mean value of the number of phonons in the modeK being in the equilibrium
state and the correlation function〈p|s〉(t) of the exciton subsystem is defined by

〈p|s〉(t) = 〈p| exp

(
− i

h̄
Ĥet

)
|s〉 (25)

with |p〉 and |s〉 denoting the exciton states localized at the sitesp ands.
The time-dependent coefficientsFm(t), Imp (t), Ī

m
p (t) and Ĩ mp (t) characterizing the

influence of the exciton–photon interaction are expressed as

Fm(t) = ωK0

∑
K

FmK 〈αK(t)〉f

Imp (t) =
∫ t

t0

dτ ω2
K0

∑
K,K ′

FmK

∑
s

F s−K ′ [〈αK(t)α∗K ′(τ )〉f − 〈αK(t)〉f〈α∗K ′(τ )〉f ]〈p|s〉∗(t − τ)

Īmp (t) =
∫ t

t0

dτ ω2
K0

∑
K,K ′

FmK

∑
s

F s−K ′ {〈αK(t)α∗K ′(τ )〉f − 〈αK(t)〉f〈α∗K ′(τ )〉f

+δKK ′ exp[−iωK(t − τ)]}〈p|s〉∗(t − τ)

Ĩmp (t) =
∫ t

t0

dτ ω2
K0

∑
K,K ′

Fm−K
∑
s

F s−K ′ [〈α∗K(t)α∗K ′(τ )〉f − 〈α∗K(t)〉f〈α∗K ′(τ )〉f ]〈p|s〉∗(t − τ).

(26)

The symbolδKK ′ denotes the Kronecker delta. New symbols for the correlation functions
of the photon field operators are introduced as follows

〈αK(t)〉f = Trf{ρ̂f(t0)âK(t − t0)}
〈αK(t)α∗K ′(τ )〉f = Trf{ρ̂f(t0)â

†
K ′(τ − t0)âK(t − t0)}

〈α∗K(t)α∗K ′(τ )〉f = Trf {ρ̂f(t0)â
†
K(t − t0)â†K ′(τ − t0)}.

(27)

The expressions for the time-dependent coefficientsFm(t), Imp (t), Ī
m
p (t) and Ĩ mp (t)

can be simplified and rewritten in a clearer form when we omit the influence of vacuum
fluctuations of the photon field in modes which do not constitute the interaction field (for
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example a pulse) and when we approximate the expressionsεK · 〈m|p̂|0〉 exp(iK · rm) in
(3) for FmK by εK0 · 〈m|p̂|0〉 exp(iK0 · rm), whereK0 denotes the wave vector of the most
important mode in the field. This is fulfilled when all modes in the field have the same
polarization vectorεK0 and when(K −K0) · rm � 1 for all K in the pulse and allrm
in the lattice. The time-dependent coefficientsFm(t), Imp (t), Ī

m
p (t) and Ĩ mp (t) can then be

rewritten into the form

Fm(t) = ωK0F̃
m
K0
A(t)

Imp (t) =
∫ t

t0

dτ ω2
K0
F̃ mK0

∑
s

F̃ s−K0
δN(t, τ )〈p|s〉∗(t − τ)

Īmp (t) =
∫ t

t0

dτ ω2
K0
F̃ mK0

∑
s

F̃ s−K0
δNv(t, τ )〈p|s〉∗(t − τ)

Ĩmp (t) =
∫ t

t0

dτ ω2
K0
F̃ m−K0

∑
s

F̃ s−K0
δNa(t, τ )〈p|s〉∗(t − τ)

(28)

with

F̃ mK0
= − 1

h̄ωK0

e

me
εK0 · 〈m|p̂|0〉 exp(iK0 · rm). (29)

The function

A(t) =
∑
K

√
h̄

2ε0VωK
〈αK(t)〉f (30)

describes a classical amplitude of the field and noise in the field is characterized by the
functions

δN(t, τ ) =
∑
K,K ′

h̄

2ε0V
√
ωKωK ′

〈δαK(t)δα∗K ′(τ )〉f

δNv(t, τ ) = δN(t, τ )+
∑
K

h̄

2ε0VωK
exp[−iωK(t − τ)]

δNa(t, τ ) =
∑
K,K ′

h̄

2ε0V
√
ωKωK ′

〈δα∗K(t)δα∗K ′(τ )〉f

(31)

whereδαK(t) = αK(t)−〈αK(t)〉f . The description of the photon field statistics is restricted
to the first and second moments which is a consequence of the perturbation approximation
in the exciton–photon coupling constants which was invoked.

Equations (20)–(22) for the matrix elements of the exciton-reduced density matrixρ̂e(t)

represent a generalization of the standard approaches in the direction of incorporation of
effects connected with processes of excitation creation and annihilation under the influence
of an ultrashort pulse. Their comparison with the standard approaches is done in the next
section. Now we would like to bring to the reader’s attention some interesting properties
of the above equations.

The time-dependent coefficients in the resulting equations are exact to the second order
in the exciton–photon and the exciton–phonon coupling. Owing to this restriction and owing
to the chaotic statistics of phonons there are no terms which would combine the influence
of both the exciton–photon and the exciton–phonon interaction on the exciton subsystem.
Inclusion of such terms is important for strong photon fields [3].

If we restrict our considerations to classical deterministic fields, then the time-dependent
coefficientsImp (t), Ī

m
p (t) and Ĩ mp (t) proportional to the second power of the exciton–photon
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coupling constants are zero. We suppose that terms proportional to the third and higher
powers of the exciton–photon coupling constants are zero in this case, too. This assumption
can be verified for a dimer [11].

The matrix elements of the exciton reduced density matrixρe
mm(t) andρe

00(t) fulfil the
relation ∑

m

ρe
mm(t)+ ρe

00(t) = 1 (32)

following from equations (20) and (21) which expresses the conservation law of the ‘total
probability’.

Although equations (20)–(22) are primarily established for the description of the
excitation dynamics in large exciton systems with the interaction with phonons under the
influence of an ultrashort pulse, they can also be conveniently used for the description of
simple systems like dimers. In fact, equations (20)–(22) in the case of a dimer represent a
strong generalization of the Bloch equations [11, 28]. This generalization is in three respects:
equations for the dimer incorporate effects of the transfer of excitation to the dynamics of
an atom (molecule) exposed to a photon field, they describe the interaction with a phonon
reservoir more precisely and more flexibly and they are able to describe the influence of
quantum noise in the photon field. A detailed study of the time development of an excitation
in the dimer reveals very interesting effects, especially in the region of values of parameters
when times characterizing pulse duration, propagation of the excitation and its relaxation
are comparable [11, 28].

The above derived equations can be used for investigations of more complex exciton
systems, e.g. polymeric chains.

5. Comparison with standard theories

The standard theories based either on time-convolution generalized master equations or on
time-convolutionless ones do not take into account the interaction with an ultrashort optical
pulse. Instead, they suppose an initially created excitation at a given place in the lattice.
In order to obtain a comparison of our approach with the standard theories, we have to
investigate our equations for cases when the optical field does not already affect the exciton
system (vacuum fluctuations of the photon field, i.e. spontaneous exciton decay processes,
are also supposed to be negligible henceforth).

The set of coupled equations (20)–(22) forρe
mn(t), ρ

e
0n(t) andρe

00(t) decomposes into
two sets of coupled equations forρe

mn(t), ρ
e
00(t) and forρe

0n(t) in this case,

d

dt
ρe
mn(t) = −

i

h̄

∑
p

Jmpρ
e
pn(t)+

i

h̄

∑
p

Jpnρ
e
mp(t)−

∑
p

Gmn
p (t)ρe

pn(t)−
∑
p

Gnm∗
p (t)ρe

mp(t)

(33)
d

dt
ρe

00(t) = 0 (34)

d

dt
ρe

0n(t) =
i

h̄

∑
p

Jpnρ
e
0p(t)−

∑
p

Gn∗
p (t)ρ

e
0p(t). (35)

It follows from (34) thatρe
00(t) remains constant and relation (32) implies that

∑
m ρ

e
mm(t)

is constant and less than or equal to 1 (in contrast to [12–14] where one exciton is assumed
to be present in the system for all times, i.e.

∑
m ρ

e
mm(t) = 1).

The set of equations (33) for the matrix elementsρe
mn(t) is precisely that one obtained

from the time-convolutionless generalized master equations applied to the exciton–phonon
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Figure 1. The probabilities [A]p1(t) (p1 = ρe
11) and [B] p2(t) (p2 = ρe

22) and the elements
[C] ρr (t) and [D] ρi(t) (ρe

12 = ρr + iρi ) for the dimer;F1 = 0.0005,F2 = 0, J = 0.0005,
ε = 0, h̄δ′ = 0, τ1 = 1000, τ2 = 200,G = 0.005,G1/G = 1+ 0.25i, G2/G = 1− 0.25i,
h̄�ph = 0.01, h̄γph = 0.01, nB = 0; for details see [11, 28] (quantities of energy are in eV, time
is in fs).

system [12–14]. However, there is a question: What is the exciton-reduced density matrix
at the end of the interaction with an optical pulse? Our theory shows that, in general, a
pulse leaves the exciton subsystem in a state which cannot be described by a density matrix
with zero off-diagonal matrix elements. This is clearly demonstrated in the case of a dimer
in figure 1 [11]. Nonzero off-diagonal matrix elements at the time when the pulse switches
off, mean that the probabilities (diagonal matrix elements) do not evolve in time according
to (t− tf)2 (tf being the time at which the pulse sharply switches off) in the short period after
the pulse switches off (i.e. there is no ‘slippage time’). This also means, that the excitation
is more delocalized after the pulse switches off and thus has a lower kinetic energy. This
leads to a faster loss of the exciton coherence.

Thus the standard theories working only with diagonal matrix elements of the exciton-
reduced density matrix, have a very limited area of application, because they also suppose
initially zero off-diagonal matrix elements. The assumption of zero off-diagonal matrix
elements is inevitable in this case because the initial condition term must be precisely zero
in order to keep consistency of the perturbation approximation invoked in the derivation
of equations. In principle the standard theories working with off-diagonal matrix elements
[12–14] are also able to describe the excitation dynamics well, but there is a question of
how to determine the initial exciton-reduced density matrix. The above developed theory
does not need it.

The time-dependent coefficientsGmn
p (t) andGn

p(t) in (23) can be further simplified for
times much longer than the relaxation timeτR of the phonon reservoir, which is important
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for the long-time analysis of the excitation behaviour,

Gmn
p = lim

t→∞G
mn
p (t) = − ih̄

N

∑
k

�2
k(G

m
k −Gn

k)
∑
s

Gs
−k
∑
ν1,ν2

[
nB(h̄�k)+ 1

Eν1 − Eν2 + h̄�k − iε

+ nB(h̄�−k)
Eν1 − Eν2 − h̄�−k − iε

]
〈m|ν1〉〈ν1|s〉〈s|ν2〉〈ν2|p〉

Gn
p = lim

t→∞G
n
p(t) = −

ih̄

N

∑
k

�2
kG

n
k

∑
s

Gs
−k
∑
ν1,ν2

[
nB(h̄�k)+ 1

Eν1 − Eν2 + h̄�k − iε

+ nB(h̄�−k)
Eν1 − Eν2 − h̄�−k − iε

]
〈n|ν1〉〈ν1|s〉〈s|ν2〉〈ν2|p〉

(36)

whereEν denotes the eigenenergy corresponding to the eigenstate|ν〉 of the free exciton
Hamiltonian Ĥe; ε denotes a small parameter which goes to zero after performing all
calculations (integration overk after substituting sums overk by integrals in (36)). The
coefficientsGmn

p in (36) were already derived in [29] when applying the time-convolutionless
generalized master equations to exciton–phonon systems. It was shown for simple systems,
that they describe correctly the time evolution of an excitation towards the equilibrium
state. Such coefficients can also be derived when the Born–Markov approximation in the
interaction picture in the time-convolution generalized master equations is invoked. The
use of time-convolution equations leads to unphysical results in other cases [22].

6. Conclusions

Starting from the Liouville equation for the density matrix we have developed a microscopic
theory which allows us to treat simultaneous creation, annihilation, propagation and
relaxation of an excitation in molecular condensates. It generalizes standard approaches
which are based on the assumption, that the excitation is initially created at a given place in
the system. We have shown that the standard approaches, not including off-diagonal matrix
elements of the exciton-reduced density matrix, have a very limited area of application,
because off-diagonal elements are generally nonzero once the pulse switches off. This
means that the time delay known as a ‘slippage time’ does not occur. Also the loss of
exciton coherence is faster.

The above developed general theory opens the possibility to study exciton systems with
such values of parameters, that the mutual interplay of creation, annihilation, propagation
and relaxation of an excitation plays an important role.

The theory is also suitable for investigations of the influence of statistical properties of
optical fields (including nonclassical ones) interacting with exciton systems.
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Modern Physics 95)ed G Ḧohler (Berlin: Springer)
[18] Hashitsume N, Shibata F and Shingū M 1977J. Stat. Phys.17 155
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